CMPE499 Engineering Design and Development
Credits: 2
Description: Computer and Electrical Engineering students will work together in development teams to complete a development task. Starting from a given problem, they will plan and design a solution to that problem, and then go on to implement and test their plan. Students demonstrate their capabilities by using the engineering method to analyze the problem to develop requirements, estimate time and costs, perform safety and risk analysis, and develop an implementation plan. The team will then follow that implementation plan to develop their solution and demonstrate their final product. This course is designated as a capstone course for both Computer and Electrical Engineering. Although the course meets for 2 credit hours per week, students should expect to work substantially more hours with their team, outside of class. Graduate students are not permitted to take this course.
Prerequisites: CMPE 322 with C or better
ENGR100 Engineering Seminar 1
Credits: 1
Description: The goal of this course is to prepare the student for study in an engineering discipline. This will include general skills for achieving success in college in addition to an introduction to the engineering disciplines and the engineering development process.
ENGR110 Modeling and Simulation
Credits: 3
Description: An introduction to modeling physical systems and simulating them using scientific computation software. Topics will include modeling dynamic systems, the basic mathematics of modeling physical systems, including difference equations, arithmetic and geometric series, spring-damper systems, open- and closed- loop systems. To support these topics, students will learn to use the MATLAB and Simulink systems, including basic expression evaluation, scalar, vector, and multi-dimensional variables, conditionals, repetition, and writing basic functions.
Prerequisites: Math placement 6.
ENGR120 Programming for Engineers
Credits: 3
Description: An introduction to programming for electrical engineers. This course is a highly focused introduction to programming in C language. It covers the basics of programming including procedures, variables, types, loop, and control structures. The course introduces basic computing resources, and introduces algorithmic solutions to common engineering and numerical problems.
Prerequisites: Math placement 6
ENGR200 Engineering Seminar 2
Credits: 1
Description: This course is focused on the tools that teams use to engineer solutions together. Participation in a team project will help the students learn about and apply current team coordination tools for project management, configuration management, and personal improvement.
ENGR300 Engineering Seminar 3
Credits: 1
Description: The goal of this course is to prepare the student for upper class courses and entering the workplace. Career preparation will include strategies for finding internships and full-time positions and preparing for the hiring process (building a resume, writing a cover letter, and interviewing). Academic preparation will be focused on how to find and read journal publications on a given topic.
ENGR310 Statistical Process Control
Credits: 3
Description: The course will develop the students understanding of statistical process control. A variety of control charts will be used for assessing process stability and estimation of process capability. We will also study how engineers design experiments based on statistical quality control for the purpose of controlling, improving, and optimizing the engineering process.
Prerequisites: MAT 375 with C or better.
MECH200 Statics
Credits: 4
Description: Statics is the analysis of forces acting on physical systems that remain at rest. Students will extend their knowledge of classical mechanics and calculus to two and three dimensional systems of particles and rigid bodies. The goal of this course is to study mechanical systems that must hold their shape or position under some sort of load, such as frames, structures, beams, trusses, and cables.
Prerequisites: MAT 212 with C or better, PHY 206 or PHY222 with C or better.
MECH210 Dynamics
Credits: 4
Description: Dynamics is the study of systems in motion. Topics include study velocity and acceleration in three dimensions, introduction to frames of reference rotation matrices, angular momentum, impact, and work-energy analysis.
Prerequisites: MECH 200 with C or better.
MECH220 Fluid Mechanics
Credits: 4
Description: Fluid Mechanics is the study of the flow of fluids. This course extends the topics of statics and dynamics to fluids. Topics include dimensional analysis, density, viscosity, surface tension, control volume analysis, differential fluid flow, laminar and turbulent flow, and a study of flow in pipes.
Prerequisites: MECH 210 Dynamics with C or better, MAT 322 Differential Equations with C or better.
MECH300 Engineering Materials
Credits: 4
Description: This course examines how materials perform under different types of mechanical loads. This includes deformation, yielding, fracture, fatigue, and wear. The course also analyzes how materials change with heat, age, and repeated loading. Students will learn about possible failure modes and develop maximum safety specifications. Students will learn about the basic materials science that influences materials the properties of materials. Students will also learn how to engineer different materials to meet design specifications.
Prerequisites: MECH 200 with C or better.
MECH310 Manufacturing Processes
Credits: 4
Description: Introduces the fundamental processes for manufacturing parts. This includes forming, forging, cutting, welding, joining, gluing, casting of materials including metals, plastics, and other materials. Other topics include rapid prototyping methods, including CNC machines, 3D printing technologies, and composite materials.
Prerequisites: MECH 300 with C or better.
MECH400 Design Methods
Credits: 4
Description: This course is designed to provide a mechanical design experience, moving from general product ideas to completed product. The course is structured around a series of design experiences, moving from user descriptions through design documents, actual design and simulation, user-acceptance, production plans, and final delivery. Students will learn about the different phases of the design process, how to select materials for a project, differences between developing a prototype versus preparing for efficient mass-production, how test and verify the component complies with its design specifications.
Prerequisites: MECH 300 with C or better and MAT 322 with C or better.
MECH410 Thermodynamics
Credits: 4
Description: This course is a study of the relationship between machines and thermodynamics. The course reviews the basic thermodynamic concepts and provides an emphasis on the relationships between work, energy, and efficiency. Students will model various mechanical devices and develop heat transfer models. Students will study nozzles, diffusers, throttles, engines, heat exchangers, pistons, refrigeration, compressors, and chemical thermodynamics.
Prerequisites: MECH 300 with C or better and MAT 322 with C or better.